Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Braz. j. med. biol. res ; 55: e11735, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355914

ABSTRACT

Oral tolerance blocks the development of specific immune responses to proteins ingested by the oral route. One of the first registries of oral tolerance showed that guinea pigs fed corn became refractory to hypersensitivity to corn proteins. Mice fed with chow containing corn are tolerant to zein, and parenteral injection of zein plus adjuvant blocks immunization to unrelated proteins injected concomitantly and reduces unspecific inflammation. Extensive and prolonged inflammatory infiltrate in the wound bed is one of the causes of pathological wound healing. Previous research shows that intraperitoneal injection of zein concomitant with skin injuries reduces the inflammatory infiltrate in the wound bed and improves wound healing. Herein, we tested if one subcutaneous injection of zein before skin injury improves wound healing. We also investigated how long the effects triggered by zein could improve skin wound healing. Mice fed zein received two excisional wounds on the interscapular skin under anesthesia. Zein plus Al(OH)3 was injected at the tail base at 10 min, or 3, 5, or 7 days before skin injuries. Wound healing was analyzed at days 7 and 40 after injury. Our results showed that a zein injection up to 5 days before skin injury reduced the inflammatory infiltrate, increased the number of T-cells in the wound bed, and improved the pattern of collagen deposition in the neodermis. These findings could promote the development of new strategies for the treatment and prevention of pathological healing using proteins normally found in the common diet.

2.
Braz. j. med. biol. res ; 51(4): e7097, 2018. graf
Article in English | LILACS | ID: biblio-889063

ABSTRACT

Vitamin E (vit. E) and vitamin C (vit. C) are antioxidants that inhibit nociception. The effect of these vitamins on oxidative-stress markers in the spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve is unknown. This study investigated the effect of intraperitoneal administration of vit. E (15 mg·kg-1·day-1) and vit. C (30 mg·kg-1·day-1), given alone or in combination, on spinal cord oxidative-stress markers in CCI rats. Adult male Wistar rats weighing 200-250 g were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received injections of vitamins or vehicle (saline containing 1% Tween 80) for 3 or 10 days (n=6/each group). The vitamins prevented the reduction in total thiol content and the increase in superoxide-anion generation that were found in vehicle-treated CCI rats. While nitric-oxide metabolites increased in vehicle-treated CCI rats 3 days after surgery, these metabolites did not show significant changes in vitamin-treated CCI rats. In all rats, total antioxidant capacity and hydrogen-peroxide levels did not change significantly. Lipid hydroperoxides increased 25% only in vehicle-treated CCI rats. These changes may contribute to vit. C- and vit. E-induced antinociception, because scavenging reactive oxygen species seems to help normalize the spinal cord oxidative status altered by pain.


Subject(s)
Animals , Male , Rats , alpha-Tocopherol/therapeutic use , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Oxidative Stress/drug effects , Sciatic Neuropathy/drug therapy , Spinal Cord/drug effects , Biomarkers/metabolism , Disease Models, Animal , Pain Measurement , Pain Threshold/drug effects , Rats, Wistar , Sciatic Neuropathy/metabolism , Spinal Cord/metabolism
3.
Braz. j. med. biol. res ; 46(5): 447-453, maio 2013. tab, graf
Article in English | LILACS | ID: lil-675674

ABSTRACT

This study tested the hypothesis that simvastatin treatment can improve cardiovascular and autonomic functions and membrane lipoperoxidation, with an increased effect when applied to physically trained ovariectomized rats. Ovariectomized rats were divided into sedentary, sedentary+simvastatin and trained+simvastatin groups (n = 8 each). Exercise training was performed on a treadmill for 8 weeks and simvastatin (5 mg/kg) was administered in the last 2 weeks. Blood pressure (BP) was recorded in conscious animals. Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses to BP changes. Cardiac vagal and sympathetic effects were determined using methylatropine and propranolol. Oxidative stress was evaluated based on heart and liver lipoperoxidation using the chemiluminescence method. The simvastatin-treated groups presented reduced body weight and mean BP (trained+simvastatin = 99 ± 2 and sedentary+simvastatin = 107 ± 2 mmHg) compared to the sedentary group (122 ± 1 mmHg). Furthermore, the trained group showed lower BP and heart rate compared to the other groups. Tachycardic and bradycardic responses were enhanced in both simvastatin-treated groups. The vagal effect was increased in the trained+simvastatin group and the sympathetic effect was decreased in the sedentary+simvastatin group. Hepatic lipoperoxidation was reduced in sedentary+simvastatin (≈21%) and trained+simvastatin groups (≈57%) compared to the sedentary group. Correlation analysis involving all animals demonstrated that cardiac lipoperoxidation was negatively related to the vagal effect (r = -0.7) and positively correlated to the sympathetic effect (r = 0.7). In conclusion, improvement in cardiovascular and autonomic functions associated with a reduction of lipoperoxidation with simvastatin treatment was increased in trained ovariectomized rats.


Subject(s)
Animals , Female , Rats , Autonomic Nervous System/drug effects , Baroreflex/drug effects , Blood Pressure/drug effects , Heart Rate/drug effects , Hypolipidemic Agents/pharmacology , Lipid Peroxidation/drug effects , Simvastatin/pharmacology , Autonomic Nervous System/physiology , Luminescence , Ovariectomy , Oxidative Stress/drug effects , Oxidative Stress/physiology , Physical Conditioning, Animal , Resistance Training
4.
Braz. j. med. biol. res ; 41(6): 482-488, June 2008. graf, tab
Article in English | LILACS | ID: lil-485846

ABSTRACT

The objective of the present study was to determine the acute effect of hemodialysis on endothelial venous function and oxidative stress. We studied 9 patients with end-stage renal disease (ESRD), 36.8 ± 3.0 years old, arterial pressure 133.8 ± 6.8/80.0 ± 5.0 mmHg, time on dialysis 55.0 ± 16.6 months, immediately before and after a hemodialysis session, and 10 healthy controls matched for age and gender. Endothelial function was assessed by the dorsal hand vein technique using graded local infusion of acetylcholine (endothelium-dependent venodilation, EDV) and sodium nitroprusside (endothelium-independent venodilation). Oxidative stress was evaluated by measuring protein oxidative damage (carbonyls) and antioxidant defense (total radical trapping antioxidant potential - TRAP) in blood samples. All patients were receiving recombinant human erythropoietin for at least 3 months and were not taking nitrates or a-receptor antagonists. EDV was significantly lower in ESRD patients before hemodialysis (65.6 ± 10.5) vs controls (109.6 ± 10.8; P = 0.010) and after hemodialysis (106.6 ± 15.7; P = 0.045). Endothelium-independent venodilation was similar in all comparisons performed. The hemodialysis session significantly decreased TRAP (402.0 ± 53.5 vs 157.1 ± 28.3 U Trolox/µL plasma; P = 0.001). There was no difference in protein damage comparing ESRD patients before and after hemodialysis. The magnitude of change in the EDV was correlated negatively with the magnitude of change in TRAP (r = -0.70; P = 0.037). These results suggest that a hemodialysis session improves endothelial venous function, in association with an antioxidant effect.


Subject(s)
Adult , Female , Humans , Male , Endothelium, Vascular/physiopathology , Kidney Failure, Chronic/physiopathology , Oxidative Stress/physiology , Renal Dialysis/adverse effects , Case-Control Studies , Kidney Failure, Chronic/therapy
5.
Braz. j. med. biol. res ; 39(10): 1281-1290, Oct. 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-437816

ABSTRACT

The main function of the cardiac adrenergic system is to regulate cardiac work both in physiologic and pathologic states. A better understanding of this system has permitted the elucidation of its role in the development and progression of heart failure. Regardless of the initial insult, depressed cardiac output results in sympathetic activation. Adrenergic receptors provide a limiting step to this activation and their sustained recruitment in chronic heart failure has proven to be deleterious to the failing heart. This concept has been confirmed by examining the effect of ß-blockers on the progression of heart failure. Studies of adrenergic receptor polymorphisms have recently focused on their impact on the adrenergic system regarding its adaptive mechanisms, susceptibilities and pharmacological responses. In this article, we review the function of the adrenergic system and its maladaptive responses in heart failure. Next, we discuss major adrenergic receptor polymorphisms and their consequences for heart failure risk, progression and prognosis. Finally, we discuss possible therapeutic implications resulting from the understanding of polymorphisms and the identification of individual genetic characteristics.


Subject(s)
Humans , Cardiac Output, Low/genetics , Cardiac Output, Low/physiopathology , Polymorphism, Genetic/genetics , Receptors, Adrenergic, alpha/genetics , Receptors, Adrenergic, beta/genetics , Disease Progression , Prognosis , Receptors, Adrenergic, alpha/physiology , Receptors, Adrenergic, beta/physiology
6.
Braz. j. med. biol. res ; 39(6): 767-772, June 2006. ilus, tab
Article in English | LILACS | ID: lil-428268

ABSTRACT

The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26 percent) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24 percent, respectively) in the Hg group, and Cu,Zn-SOD was lower (54 percent) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10 percent, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69 percent) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.


Subject(s)
Animals , Male , Rats , Antioxidants/analysis , Erythrocytes/enzymology , Lipid Peroxidation/drug effects , Mercuric Chloride/poisoning , Oxidative Stress/drug effects , Peroxidases/blood , Antioxidants/metabolism , Biomarkers/blood , Chronic Disease , Disease Models, Animal , Luminescence , Peroxidases/metabolism , Rats, Wistar , Time Factors
7.
Braz. j. med. biol. res ; 35(9): 1075-1081, Sept. 2002. tab, graf
Article in English | LILACS | ID: lil-325903

ABSTRACT

The purpose of the present study was to examine myocardial antioxidant and oxidative stress changes in male and female rats in the presence of physiological sex hormone concentrations and after castration. Twenty-four 9-week-old Wistar rats were divided into four groups of 6 animals each: 1) sham-operated females, 2) castrated females, 3) sham-operated males, and 4) castrated males. When testosterone and estrogen levels were measured by radioimmunoassay, significant differences were observed between the castrated and control groups (both males and females), demonstrating the success of castration. Progesterone and catalase levels did not change in any group. Control male rats had higher levels of glutathione peroxidase (50 percent) and lower levels of superoxide dismutase (SOD, 14 percent) than females. Control females presented increased levels of SOD as compared to the other groups. After castration, SOD activity decreased by 29 percent in the female group and by 14 percent in the male group as compared to their respective controls. Lipid peroxidation (LPO) was assessed to evaluate oxidative damage to cardiac membranes by two different methods, i.e., TBARS and chemiluminescence. LPO was higher in male controls compared to female controls when evaluated by both methods, TBARS (360 percent) and chemiluminescence (46 percent). Castration induced a 200 percent increase in myocardial damage in females as determined by TBARS and a 20 percent increase as determined by chemiluminescence. In males, castration did not change LPO levels. These data suggest that estrogen may have an antioxidant role in heart muscle, while testosterone does not


Subject(s)
Animals , Male , Female , Rats , Antioxidants , Gonadal Steroid Hormones , Myocardium , Oxidative Stress , Analysis of Variance , Castration , Free Radical Scavengers , Glutathione Peroxidase , Lipid Peroxidation , Luminescent Measurements , Myocardium , Rats, Wistar , Superoxide Dismutase , Thiobarbituric Acid Reactive Substances
8.
Braz. j. med. biol. res ; 33(11): 1363-8, Nov. 2000. tab, graf
Article in English | LILACS | ID: lil-273226

ABSTRACT

The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 +/- 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 +/- 0.02 nmol/mg protein and 14706 +/- 1581 cps/mg protein) than LD muscle of normal rats (0.23 +/- 0.04 nmol/mg protein and 7389 +/- 1355 cps/mg protein). Diabetes induced a 92 percent increase in catalase and a 27 percent increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58 percent) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy


Subject(s)
Diabetes Mellitus, Experimental , Muscle, Skeletal/physiology , Oxidative Stress/physiology , Case-Control Studies , Linear Models , Luminescent Measurements , Rats, Wistar , Thiobarbituric Acid Reactive Substances
9.
Braz. j. med. biol. res ; 30(11): 1337-42, Nov. 1997. ilus, tab, graf
Article in English | LILACS | ID: lil-201680

ABSTRACT

Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350g) were perfused at 31°C with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 + 3.2; H2O2: 60.5 + 13.9 percent of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 + 259; H2O2: 5,304 + 133 cps mg protein(-1) 60 min(-1), oxygen uptake (Tyrode: 0.44 + 0.1; H2O2: 3.2 + 0.8 nmol min(-1) mg protein(-1) and malonaldehyde (TBARS) foramtion (Tyrode: 0.12 + 0; H2O2: 0.37 + 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (Chemiluminescence: 4,098 + 531), oxygen uptake (0.51 + 0) and TBARS (0.13 + 0) bud did not prevent the H2O2-induced contractures (33.3 + 16 percent). ATP (Tyrode: 2.84 + 0; H2O2: 0.57 + 0) and glycogen levels (Tyrode: 0.46 + 0; H2O22: 0.26 + 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 + 0 and glycogen: 0.27 + 0). Trolox C is known to be more effective than alpha-tocopherol or gamma-tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contracture.


Subject(s)
Rats , Animals , Male , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Myocardial Contraction/drug effects , Vitamin E/pharmacology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL